Copied to
clipboard

?

G = C22×Q32order 128 = 27

Direct product of C22 and Q32

direct product, p-group, metabelian, nilpotent (class 4), monomial

Aliases: C22×Q32, C8.11C24, C23.65D8, C16.12C23, Q16.1C23, (C2×C4).96D8, C4.23(C2×D8), C8.56(C2×D4), (C2×C8).264D4, C22.77(C2×D8), C2.26(C22×D8), C4.17(C22×D4), (C2×C8).573C23, (C22×C16).12C2, (C2×C16).91C22, (C22×C4).623D4, (C22×Q16).10C2, (C22×C8).543C22, (C2×Q16).146C22, (C2×C4).874(C2×D4), SmallGroup(128,2142)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C22×Q32
C1C2C4C8C2×C8C22×C8C22×Q16 — C22×Q32
C1C2C4C8 — C22×Q32
C1C23C22×C4C22×C8 — C22×Q32
C1C2C2C2C2C4C4C8 — C22×Q32

Subgroups: 340 in 180 conjugacy classes, 100 normal (9 characteristic)
C1, C2, C2 [×6], C4, C4 [×3], C4 [×8], C22 [×7], C8, C8 [×3], C2×C4 [×6], C2×C4 [×12], Q8 [×20], C23, C16 [×4], C2×C8 [×6], Q16 [×8], Q16 [×12], C22×C4, C22×C4 [×2], C2×Q8 [×18], C2×C16 [×6], Q32 [×16], C22×C8, C2×Q16 [×12], C2×Q16 [×6], C22×Q8 [×2], C22×C16, C2×Q32 [×12], C22×Q16 [×2], C22×Q32

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D8 [×4], C2×D4 [×6], C24, Q32 [×4], C2×D8 [×6], C22×D4, C2×Q32 [×6], C22×D8, C22×Q32

Generators and relations
 G = < a,b,c,d | a2=b2=c16=1, d2=c8, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 61)(9 62)(10 63)(11 64)(12 49)(13 50)(14 51)(15 52)(16 53)(17 46)(18 47)(19 48)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(65 88)(66 89)(67 90)(68 91)(69 92)(70 93)(71 94)(72 95)(73 96)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)(97 116)(98 117)(99 118)(100 119)(101 120)(102 121)(103 122)(104 123)(105 124)(106 125)(107 126)(108 127)(109 128)(110 113)(111 114)(112 115)
(1 96)(2 81)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 103)(18 104)(19 105)(20 106)(21 107)(22 108)(23 109)(24 110)(25 111)(26 112)(27 97)(28 98)(29 99)(30 100)(31 101)(32 102)(33 125)(34 126)(35 127)(36 128)(37 113)(38 114)(39 115)(40 116)(41 117)(42 118)(43 119)(44 120)(45 121)(46 122)(47 123)(48 124)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 79)(61 80)(62 65)(63 66)(64 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 118 9 126)(2 117 10 125)(3 116 11 124)(4 115 12 123)(5 114 13 122)(6 113 14 121)(7 128 15 120)(8 127 16 119)(17 77 25 69)(18 76 26 68)(19 75 27 67)(20 74 28 66)(21 73 29 65)(22 72 30 80)(23 71 31 79)(24 70 32 78)(33 81 41 89)(34 96 42 88)(35 95 43 87)(36 94 44 86)(37 93 45 85)(38 92 46 84)(39 91 47 83)(40 90 48 82)(49 104 57 112)(50 103 58 111)(51 102 59 110)(52 101 60 109)(53 100 61 108)(54 99 62 107)(55 98 63 106)(56 97 64 105)

G:=sub<Sym(128)| (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,49)(13,50)(14,51)(15,52)(16,53)(17,46)(18,47)(19,48)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(97,116)(98,117)(99,118)(100,119)(101,120)(102,121)(103,122)(104,123)(105,124)(106,125)(107,126)(108,127)(109,128)(110,113)(111,114)(112,115), (1,96)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,97)(28,98)(29,99)(30,100)(31,101)(32,102)(33,125)(34,126)(35,127)(36,128)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,121)(46,122)(47,123)(48,124)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,65)(63,66)(64,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,118,9,126)(2,117,10,125)(3,116,11,124)(4,115,12,123)(5,114,13,122)(6,113,14,121)(7,128,15,120)(8,127,16,119)(17,77,25,69)(18,76,26,68)(19,75,27,67)(20,74,28,66)(21,73,29,65)(22,72,30,80)(23,71,31,79)(24,70,32,78)(33,81,41,89)(34,96,42,88)(35,95,43,87)(36,94,44,86)(37,93,45,85)(38,92,46,84)(39,91,47,83)(40,90,48,82)(49,104,57,112)(50,103,58,111)(51,102,59,110)(52,101,60,109)(53,100,61,108)(54,99,62,107)(55,98,63,106)(56,97,64,105)>;

G:=Group( (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,49)(13,50)(14,51)(15,52)(16,53)(17,46)(18,47)(19,48)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(97,116)(98,117)(99,118)(100,119)(101,120)(102,121)(103,122)(104,123)(105,124)(106,125)(107,126)(108,127)(109,128)(110,113)(111,114)(112,115), (1,96)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,97)(28,98)(29,99)(30,100)(31,101)(32,102)(33,125)(34,126)(35,127)(36,128)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,121)(46,122)(47,123)(48,124)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,65)(63,66)(64,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,118,9,126)(2,117,10,125)(3,116,11,124)(4,115,12,123)(5,114,13,122)(6,113,14,121)(7,128,15,120)(8,127,16,119)(17,77,25,69)(18,76,26,68)(19,75,27,67)(20,74,28,66)(21,73,29,65)(22,72,30,80)(23,71,31,79)(24,70,32,78)(33,81,41,89)(34,96,42,88)(35,95,43,87)(36,94,44,86)(37,93,45,85)(38,92,46,84)(39,91,47,83)(40,90,48,82)(49,104,57,112)(50,103,58,111)(51,102,59,110)(52,101,60,109)(53,100,61,108)(54,99,62,107)(55,98,63,106)(56,97,64,105) );

G=PermutationGroup([(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,61),(9,62),(10,63),(11,64),(12,49),(13,50),(14,51),(15,52),(16,53),(17,46),(18,47),(19,48),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(65,88),(66,89),(67,90),(68,91),(69,92),(70,93),(71,94),(72,95),(73,96),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87),(97,116),(98,117),(99,118),(100,119),(101,120),(102,121),(103,122),(104,123),(105,124),(106,125),(107,126),(108,127),(109,128),(110,113),(111,114),(112,115)], [(1,96),(2,81),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,103),(18,104),(19,105),(20,106),(21,107),(22,108),(23,109),(24,110),(25,111),(26,112),(27,97),(28,98),(29,99),(30,100),(31,101),(32,102),(33,125),(34,126),(35,127),(36,128),(37,113),(38,114),(39,115),(40,116),(41,117),(42,118),(43,119),(44,120),(45,121),(46,122),(47,123),(48,124),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,79),(61,80),(62,65),(63,66),(64,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,118,9,126),(2,117,10,125),(3,116,11,124),(4,115,12,123),(5,114,13,122),(6,113,14,121),(7,128,15,120),(8,127,16,119),(17,77,25,69),(18,76,26,68),(19,75,27,67),(20,74,28,66),(21,73,29,65),(22,72,30,80),(23,71,31,79),(24,70,32,78),(33,81,41,89),(34,96,42,88),(35,95,43,87),(36,94,44,86),(37,93,45,85),(38,92,46,84),(39,91,47,83),(40,90,48,82),(49,104,57,112),(50,103,58,111),(51,102,59,110),(52,101,60,109),(53,100,61,108),(54,99,62,107),(55,98,63,106),(56,97,64,105)])

Matrix representation G ⊆ GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
01000
00100
00010
00001
,
10000
0161100
06100
000712
000112
,
10000
001600
016000
000710
0001210

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,16,6,0,0,0,11,1,0,0,0,0,0,7,11,0,0,0,12,2],[1,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,7,12,0,0,0,10,10] >;

44 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4L8A···8H16A···16P
order12···244444···48···816···16
size11···122228···82···22···2

44 irreducible representations

dim111122222
type++++++++-
imageC1C2C2C2D4D4D8D8Q32
kernelC22×Q32C22×C16C2×Q32C22×Q16C2×C8C22×C4C2×C4C23C22
# reps11122316216

In GAP, Magma, Sage, TeX

C_2^2\times Q_{32}
% in TeX

G:=Group("C2^2xQ32");
// GroupNames label

G:=SmallGroup(128,2142);
// by ID

G=gap.SmallGroup(128,2142);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,-2,-2,448,253,456,1684,851,242,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^16=1,d^2=c^8,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽